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Abstract

Automatic Speech Recognition (ASR) is reaching further and fur-
ther into everyday life with Apple’s Siri, Google voice search, auto-
mated telephone information systems, dictation devices, closed cap-
tioning, and other applications. Along with such advances in speech
technology, sociolinguists have been considering new methods for align-
ment and vowel formant extraction, including techniques like the Penn
Aligner (Yuan and Liberman, 2008) and the FAVE automated vowel
extraction program (Evanini, Isard, and Liberman, 2009, Rosenfelder,
Fruehwald, Evanini, and Yuan, 2011). With humans transcribing
audio recordings into sentences, these semi-automated methods can
produce effective vowel formant measurements (Labov, Rosenfelder,
and Fruehwald, 2013). But as the quality of ASR improves, soci-
olinguistics may be on the brink of another transformative technol-
ogy: large-scale, completely automated vowel extraction without any
need for human transcription. It would then be possible to quickly
extract vowels from virtually limitless hours of recordings, such as
YouTube, publicly available audio/video archives, and large-scale per-
sonal interviews or streaming video. How far away is this transforma-
tive moment? In this article, we introduce a fully automated pro-
gram called DARLA (short for “Dartmouth Linguistic Automation,”
http://darla.dartmouth.edu), which automatically generates tran-
scriptions with ASR and extracts vowels using FAVE. Users simply up-
load an audio recording of speech, and DARLA produces vowel plots,
a table of vowel formants, and probabilities of the phonetic environ-
ments for each token. In this paper, we describe DARLA and explore
its sociolinguistic applications. We test the system on a dataset of
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the US Southern Shift and compare the results with semi-automated
methods.

1 Introduction

Existing computational tools for sociophonetics like the Penn Aligner
(Yuan and Liberman, 2008) and the ProsodyLab Aligner (Gorman,
Howell, and Wagner, 2011) use computational methods to “force align”
words and phonemes against speech. Such alignment methods are typ-
ically used in a semi-automated manner, i.e., human researchers sup-
ply manual transcriptions of sentences, and the aligner maps phonemes
to their acoustic representations. More recently, Evanini, Isard, and
Liberman (2009) built a program for automated formant measure-
ment, and Rosenfelder, Fruehwald, Evanini, and Yuan (2011) com-
bined it with the Penn Aligner to create a system called FAVE (Forced
Alignment & Vowel Extraction). With humans transcribing record-
ings into sentences, these semi-automated methods can produce effec-
tive analyses of field data (Labov, Rosenfelder, and Fruehwald, 2013,
Stanford, Severance, and Baclawski, 2014).

Sociolinguistics may now be on the brink of another transforma-
tive technology: large-scale, completely automated vowel extraction
without any need for human transcription. With such technology, it
would be possible to quickly extract vowel formants from virtually
limitless hours of recordings, such as YouTube and audio or video
archives. Imagine how much more we could learn about dialect vari-
ation if we could quickly analyze the millions of hours of audio data
around the world in archives and vast publicly available sites. What
kinds of new generalizations may be possible? What new kinds of
moment-by-moment style shifts might we observe?

1.1 Prior work

Forced alignment programs take an orthographic transcription and au-
dio as input, and produce a time-alignment of the words and phonemes
with the audio. There are several such programs available, includ-
ing the Penn Aligner, the ProsodyLab Aligner, EasyAlign (Goldman,
2011), and WebMAUS (Kisler, Schiel, and Sloetjes, 2012). All of these
systems are built as wrappers around the forced-alignment functions of
the HTK speech recognition toolkit (1989-2015), tailored for linguistic
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applications.
Methods for obtaining formant measurements have traditionally

relied on token-by-token extraction aided by software like Praat (Boersma
and Weenink, 2015) that uses Linear Predictive Coding (LPC). With
forced alignment tools like the Penn Aligner, a human transcriber pro-
duces a sentence-level transcription that is aligned to the audio using
acoustic models and a pronunciation dictionary. These alignments
help researchers to quickly locate vowels and take formant measure-
ments. University of Pennsylvania researchers have recently developed
FAVE, a system that combines the above-described forced alignment
(FAVE-Align) with a program, FAVE-Extract, that automatically ex-
tracts vowel formant measurements at the appropriate points with
LPC. The researcher manually creates a sentence-level transcription,
and the semi-automated FAVE system does the rest, returning the fi-
nal output as a table of vowels and their formant values in the speech
recording. An example of this process is shown in Figure 1.

Figure 1: Praat visualization of a semi-automated vowel extraction workflow
using FAVE.

(a) Manual transcription to be input to FAVE-Align.
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(b) Alignment output from FAVE-Align, which is then input to FAVE-
Extract.

vowel stress word F1 F2 F3 time beg end dur
AH 1 WHAT 630.5 1274.5 2012.7 244.61 244.587 244.656 0.069
AE 1 THAT 741.0 1831.4 2908.8 245.24 245.197 245.327 0.130

(c) Final output from FAVE-Extract. The ‘stress’ column shows whether the vowel has primary,
secondary, or no stress in the word, F1, F2, and F3 are the values of the first three formants, and ‘time’
(in seconds) indicates the point in the audio at which the formants are measured. ‘beg’, ‘end’, and
‘dur’ respectively specify the start and end points, and duration, of the vowel. Not shown: Additional
columns with formant measurements at different positions in the vowel, bandwidths, environments,
and other information.
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Finally, Thomas and Kendall (2007) have developed an R library,
vowels, and a web interface, NORM, that aids researchers in normal-
izing and scaling vowel formant measurements as well as producing
F1/F2 vowel plots.

Semi-automated alignment and vowel extraction methods there-
fore represent a significant improvement in efficiency over the largely
manual methods that were ubiquitous only a decade ago. No au-
tomated or semi-automated method is ever perfect, of course; these
methods are prioritizing speed and access to larger data sets, while
allowing for some error.

Initial testing suggests that methods like FAVE can produce rea-
sonably accurate vowel measurements of speakers, especially when
large amounts of data are processed. Evanini (2009:92) and Evanini
et al. (2009) compare manual methods against automated extraction,
and show that the amount of error is comparable in most cases to
the error found between human analysts. A comparison of such semi-
automated methods with Atlas of North American English (Labov,
Ash, and Boberg, 2006) data found that the semi-automated results
were comparable to manual measurements (Evanini et al., 2009:3-4).
In addition, Evanini (2009) points out that the sociolinguistic inter-
pretations (e.g., Northern Cities Shift) are comparable in both ap-
proaches. Labov et al. (2013:37-38) compare ANAE formant data
against the much larger data set extracted from the Philadelphia
Neighborhood Corpus, and find that as the number of tokens increases,
the standard error of the mean becomes smaller.

1.2 Research question

Prior work suggests that semi-automated techniques are effective for
many types of sociophonetic analyses. Even so, all of these meth-
ods still require a significant human workload: manually creating the
sentence-level transcriptions.1 Because of this barrier in time and
resources, many large data sets remain unanalyzed. What new knowl-
edge about language variation and change may be waiting in the vast
pools of audio recordings that are untranscribed and unanalyzed?

In the present study, we investigate the possibility of removing the
human component entirely from the process. Using speech recogni-
tion, can vowel extraction be fully automated such that there is no

1Transcription is estimated to take 10-15 times the duration of the audio, depending
on the quality and type of speech.
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need for human intervention at any point? We build a system called
DARLA, short for “Dartmouth Linguistic Automation,” that auto-
mates the entire pipeline from transcribing audio to alignment and
formant extraction. The web interface of DARLA is elaborated upon
in Reddy and Stanford (2015). In the present paper, we test DARLA
on a corpus of audio recordings of northern and southern US speakers
and investigate how it compares to semi-automated methods.

1.3 Our idea

The technology of automatic speech recognition is constantly improv-
ing, and it is possible that ASR systems will reach human transcrip-
tion accuracy in a decade or so. However, anyone who has used speech
recognition applications such as Apple’s Siri, Nuance’s Dragon, or au-
tomated telephone banking systems knows that the current technology
is still very unreliable. These systems are fast and often helpful, but
they cannot match the accuracy of human manual transcriptions. In
unconstrained natural speech data, errors in speech recognition are
quite common.

Despite the imperfection of automatic speech recognition, we be-
lieve that sociophoneticians do not need to wait for years to begin
taking advantage of the possibilities of large-scale data analyses. The
power of ASR can be harnessed right now for some types of sociolin-
guistic applications. Here’s why: whereas applications like dictation
software or mobile assistants require that the system captures the
words accurately, sociophonetic vowel research generally focuses on a
much narrower objective, namely, extracting a representative vowel-
space for each speaker, based on stressed vowel tokens. In this paper,
we show that current ASR technology is adequate for extracting for-
mant values from stressed vowels for certain sociophonetic problems.

Examples (1-4) show a human transcription compared with ASR
output on a subset of the Switchboard corpus (Godfrey and Holliman,
1993). The italicized words highlight the ASR errors. (Details about
our speech recognition system, experimental setup and corpus are in
Sec. 2.1 and Sec. 3.1.)

(1)
Manual: give me your first impressions

ASR: give me yours first impression

(2)
Manual: it’s one of those

ASR: it’s close
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(3)
Manual: no it’s it’s wood turning

ASR: no it it would turn it

(4)
Manual: and we really don’t spend on anything

ASR: and we don’t depend on anything

Notice that the ASR errors above do not affect the identity of the
vowel being targeted. Rather, the errors affect the identity of the
word. The stressed vowels, which are the most common target of
sociophonetic analyses, are accurately identified. For example, note
the error of ‘your’ versus ‘yours’ in example (1). For most practical
sociophonetic purposes, it is irrelevant whether the stressed vowel is
extracted from the word ‘your’ or ‘yours’. Likewise, in example (3),
it is unlikely that any sociophonetic analysis would crucially depend
on knowing that the stressed vowel in ‘turning’ was extracted from
‘turning’ rather than ‘turn it’, or that the ASR system outputs the
word ‘would’ instead of ‘wood’ (example 3). In the last case, the vowel
would be accurately measured, although if a researcher chose not to
include function words, the vowel token in ‘would’ would be discarded.

Of course, these examples are not comprehensive: ASR errors that
change the identity of the stressed vowel do occur, but to a much lower
degree than word errors, and increasing the volume of data can mini-
mize their effects. Figure 2 shows the error rates on the Switchboard
corpus used in this study. Notice that the stressed vowel error rate is
low in comparison with the error rate at the word or phoneme level.2

A completely automated vowel extraction process makes it possible
to quickly analyze hundreds or thousands of tokens of every vowel in
a speaker’s vowel space. As a result, errors in a few tokens are likely
to become negligible to the overall sociophonetic interpretation of the
data for that speaker. In creating our program for automatic vowel
extraction, we take advantage of this relatively good stressed vowel
accuracy for the purpose of formant analysis.

On the other hand, some vowel environments are important in so-
ciophonetic analyses, such as the presence of sonorant consonants or
obstruent+liquid clusters, such as ‘close’ for ‘those’ in example (2)
above, post-vocalic velar consonants, and so on. Our system accounts
for these effects by reporting the probabilities for the phonetic envi-
ronment for each vowel token, i.e., the likelihood that the segment
on either side of the vowel token is in a particular place, manner, or

2These error rates are relatively high because the acoustic models are trained on a
different corpus – i.e., not Switchboard.
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Figure 2: ASR error rates on the Switchboard data (46 Southern and 47
Northern speakers, 55.5 total hours). The error rate for stressed vowels is
significantly lower than for words. Errors for phonetic environments of vowels
in terms of place, manner, and voicing are also shown.
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voicing class. For example, if researchers wish to examine the effects
of post-vocalic nasals (e.g., ‘pin’/‘pen’ versus ‘pit’/‘pet’), they could
use the probabilities provided in our system’s output to code for these
contrasting environments, with similar approaches to examine the ef-
fects of post-vocalic velar consonants, pre-vocalic liquids, and so on.
Sec. 2.3 describes how the probabilities are computed.

1.4 Completely automated vowel extraction

DARLA’s completely automated system takes as input an audio file,
and returns data about the vowels, including the formants, phonetic
environments, and other information. As such, the manual sentence
transcription step (Fig. 1) required for semi-automated systems like
FAVE is no longer needed.

We invite other researchers to try the system at http://darla.

dartmouth.edu and help test it by using their own data sets. Results
of such testing will help us to continue to improve DARLA and tai-
lor it to other sociophonetic research questions. Besides research, we
believe that DARLA will be useful as a teaching demonstration for
introductory linguistics courses and sociolinguistics courses.

2 Methods

DARLA’s end-to-end pipeline consists of an ASR engine for tran-
scription of the input audio, forced alignment of the audio with the
transcription using the ProsodyLab Aligner, confidence filters and
phonetic environment probabilities using classifiers trained on speech
data, code built upon FAVE-extract for formant extraction, and vowel
space plotting using the R vowels package. DARLA is implemented
as a user-friendly webpage that allows users to upload their audio
files or links to YouTube videos, and receive the results by e-mail.
Descriptions of the main components of our system follow.

2.1 Automatic speech recognition engine

DARLA uses a speech recognition system based on Hidden Markov
Models (HMMs) (Jelinek, Bahl, and Mercer, 1975), implemented with
the latest version of the Carnegie Mellon University (CMU) Sphinx
toolkit (2000-2015).
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As is standard, the speech signal is represented as a sequence of
Mel-Frequency Cepstral Coefficients, or MFCCs (Davis and Mermel-
stein, 1980). Acoustic frames of 25ms duration are extracted from the
audio at overlapping intervals of 10ms, and a set of 12 MFCCs are
computed from the Fourier transform of the audio.

The goal of automatic speech recognition is to “decode” the most
likely transcription ŵ of an input speech recording o, i.e:

ŵ = arg max
w

P (w|o) = arg max
w

P (w)P (o|w) (1)

The quantity P (w) comes from the language model, which is a
probability distribution over word sequences in the language. The
language model gives a gradient measure of syntactic and semantic
“goodness” of a sentence. P (o|w) is given by the acoustic model,
which is a distribution that maps phones to their MFCC acoustic rep-
resentations using HMMs and Gaussian Mixture Models (GMMs). A
pronunciation dictionary, which links orthographic spellings of words
to their pronunciations, is used in conjunction with the acoustic model.
The parameters of these probabilistic models are estimated by training
on large speech and text corpora.

We train a triphone acoustic model (which estimates parameters
for each phoneme in the context of its left and right neighbors) with
a mixture of 32 Gaussians. The choice of acoustic model affects the
accuracy of ASR: best results are obtained when the model is trained
on data with the same sampling rate and from dialects that are similar
to the speech to be transcribed. For this reason, we train separate
acoustic models on 8kHz and 16kHz speech, and include the option
on the web application to use acoustic models trained on speech from
various different dialect regions. The Standard American 8kHz models
are trained on the LibriSpeech corpus (Panayotov, Chen, Povey, and
Khudanpur, 2015), a collection of US English speech consisting of
about 360 hours of audiobooks from the open-access LibriVox project.3

All training was carried out using SphinxTrain.4

The pronunciation dictionary that we use for training and recogni-
tion is the CMU Dictionary of Standard American English pronunci-
ations (1993-2015). The language model is trained on the transcripts
of the HUB4 broadcast news corpus.

3https://librivox.org
4https://github.com/cmusphinx/sphinxtrain
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In practice, the language model component in Eq. 1 is typically
scaled by a non-negative factor α, the “language weight” (Eq. 2).
Larger values of α prioritize the language model and tend to result in
more grammatically correct transcriptions, whereas lower values shift
the burden to the acoustic model.

ŵ = arg max
w

P (w|o) = arg max
w

P (w)αP (o|w) (2)

The DARLA interface allows users to specify whether their audio
consists mainly of free speech and reading passages, for which a larger
language weight would be beneficial, or word lists, for which the pro-
gram uses a lower weight. Pocketsphinx5 is used for decoding of the
speech to produce transcriptions.

2.2 Alignment and token filtering

The ProsodyLab aligner with acoustic models trained on a subset (10
hours) of the LibriSpeech corpus is used for the forced-alignment step.

Alignment with noisy transcriptions (such as those produced by
ASR) often contain errors even if the vowels are identified correctly.
Figure 3 shows an example where the ASR transcribes an input as
it’s close instead of it’s one of those. Even though the OW vowel in
the last syllable is correct, the vowel is aligned against multiple words
in the speech due to the absence of one of in the ASR transcription.
Formants extracted from such an alignment will naturally be incor-
rect. To minimize such errors, we train probabilistic models for each
phoneme, based on MFCC features as well as duration, which give the
likelihood of any acoustic segment being matched to the hypothesized
phoneme. Low-likelihood vowel tokens are removed from the analysis.

Following standard practices in sociophonetics (Baranowski, 2013),
DARLA excludes unstressed syllables, grammatical function words
and other common lexical items (e.g., is, the, I’m, and, etc.), and
tokens whose formants have high bandwidths (> 300 Hz) – i.e., to-
kens which likely have inaccurate formant alignments. The system
output includes a file with the unfiltered tokens as well as the filtered
measurements.

5 https://github.com/cmusphinx/pocketsphinx
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Figure 3: ASR transcription resulting in a poor alignment.

2.3 Phonetic environment probabilities

Sociolinguists are often interested in the phonetic environment of the
vowel, such as whether the coda is a velar or the onset is voiced.
Researchers in speech recognition have identified methods to classify
whether or not any sound frame belongs to one of these distinctive
phonetic features (Hasegawa-Johnson, Baker, Borys, Chen, Coogan,
Greenberg, Juneja, Kirchhoff, Livescu, Mohan, Muller, Sonmez, and
Wang, 2005). Following their work, we train classifiers on each frame
in terms of MFCCs, and formant frequencies, amplitudes, and band-
widths for (1) whether the segment is a vowel or consonant and (2)
place, manner, and voicing of consonants. The classifiers are logistic
regression models trained on the phonetically annotated Switchboard
Transcription Project data (Greenberg, Hollenback, and Ellis, 1996)
for 8kHz speech, and the TIMIT corpus (Garofolo, Lamel, Fisher,
Fiscus, Pallett, Dahlgren, and Zue, 1993) for 16kHz. The probabili-
ties, P (phonetic feature|frame), are averaged over the duration of the
segment and reported in DARLA’s output.

3 Feasibility test: Fully automated

(DARLA) compared to semi-automated

(FAVE)

3.1 Experimental Setup

For our feasibility test of DARLA, we examined the U.S. Southern
Vowel Shift (SVS) in the Switchboard corpus of phone conversations.
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From this corpus, we selected conversations by U.S. Southern and
Northern speakers, totaling 46 and 47 speakers respectively. 22 of the
Northern speakers and 28 of the Southern speakers are women. This
selection of the corpus totals 55 hours and 38 minutes.

We categorized speakers as Southern or Northern according to
their home regions in the Switchboard metadata, as compared with the
regions identified in the ANAE. Speakers were considered Southern if
their Switchboard regions (Fig. 4) were Southern or South Midland,
corresponding approximately to the ANAE categories of South and
Texas.

Figure 4: Dialect regions used in the Switchboard corpus. Reprinted from
http://www.isip.piconepress.com/projects/switchboard/doc/swb_

dialects.

In the present study, we used the 8kHz acoustic models trained on
Standard American English speech since we are evaluating the system
on a mixed set of dialects.

Fig. 5 shows a sketch of the Southern Shift (Wolfram and Schilling-
Estes, 2006, Labov, 1996). In our discussion of the Southern Shift, we
use the CMU dictionary’s Arpabet vowel notation (Table 1).

For this study of the Southern Shift, we chose to focus on the tense-
lax shifts (EH-EY and IH-IY) and the back vowel fronting of UW and OW.
We hypothesize that the Southern speakers will show greater tense-lax
shifts and greater UW and OW fronting than the Northern speakers. We
further hypothesize that both DARLA and FAVE will find evidence of
these North-South contrasts. We also note that Kendall and Fridland
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Figure 5: The key movements of the U.S. Southern Shift. Adapted from
Wolfram and Schilling-Estes (2006:149).

UW

OW

IY

IH

EY

EH

Table 1: Arpabet vowel set.

AA AE AH AO AW AY EH

hot bat but bought bout bite bet

EY IH IY OW OY UH UW

bait bit beat boat boy hood boot
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(2012) find that the EH-EY shift is typically more advanced than IH-IY,
and therefore expect that EH-EY will be more advanced in this data set.
Following Kendall and Fridland, we measure the Euclidean distance
(F1/F2 axes) as a measure of the extent of the tense-lax shift.

Our dataset consists of 55 hours and 38 minutes of two-person
telephone conversations, with an average of 383 tokens per vowel per
speaker. We used DARLA to automatically transcribe and align these
Switchboard recordings, and extract F1 and F2 from the stressed vowel
tokens after acoustic confidence filtering.

As a control for the feasibility test, we also extracted the for-
mants from the same dataset using the (semi-automated) FAVE sys-
tem along with manual transcriptions. Specifically, we used FAVE-
Align to align the transcriptions provided by Switchboard, and passed
those alignments into FAVE-Extract, which provides the formant mea-
surements. We recognize that there are many different approaches to
choosing formant extraction points, so we simply used the FAVE de-
fault method and applied it consistently to both DARLA and FAVE
in this study. Future work could try different measurement points.
For both DARLA and FAVE, we normalized the formant data with
the Lobanov (speaker-intrinsic) method (Lobanov, 1971, Thomas and
Kendall, 2007), and scaled the z-scores to the Hz scale using the con-
stants in NORM.6

F1scaled = 250 + 500 · F1− F1min

F1max − F1min
(3)

F2scaled = 850 + 1400 · F2− F2min

F2max − F2min
(4)

3.2 Results

While DARLA showed some transcription errors (see Fig. 2), both
DARLA and FAVE generated comparable sociolinguistic analyses of
Southern features. This overall result suggests that DARLA can pro-
vide usable results for such research questions.

Figure 6 shows that both DARLA and FAVE revealed clear North-
South contrasts in EY-EH and IY-IH in the expected directions. For
both methods, these shifts appear in the expected Southern Shift di-
rections (EY and IY are lowered and backed, and EH and IH are raised

6http://lvc.uoregon.edu/norm/about_norm.php#scaling
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and fronted). Likewise, our hypotheses about OW and UW fronting are
confirmed as the Southern speakers showed stronger fronting than the
Northerners under both systems. The main difference is that DARLA
shows slightly weaker Southern effects, as observed in the graphical
contrasts between Southern and Northern speakers.

Table 2 quantitatively measures the tense-lax shift by the Eu-
clidean distance between the mean values of the tense and lax vowels
in F1/F2 space, averaged over all the speakers in that region. The
Southern speakers have a smaller tense-lax distance than the North-
ern under both DARLA and FAVE, as expected of the Southern Vowel
Shift.

The table also shows the results of the Repeated Measures ANOVA
tests of the Northern versus Southern Euclidean distances. The North-
South contrast in the EH-EY shift was significant for both methods, but
the contrast in IH-IY was only significant in FAVE (p = 0.011), not
DARLA (p = 0.284). For IH-IY, DARLA’s results are in the expected
direction, but the contrast is not strong enough to be significant. In
prior Southern Shift research, EH-EY is typically more advanced than
IH-IY (Kendall and Fridland, 2012), and both DARLA and FAVE
show this effect as well.

Table 2: Tense-lax shifts.

FAVE DARLA
North Mean EH-EY distance 79 Hz 83 Hz
South Mean EH-EY distance 31 Hz 39 Hz
Repeated measures ANOVA p = 0.001∗∗ p < 0.0001∗∗∗

North Mean IH-IY distance 150 Hz 145 Hz
South Mean IH-IY distance 117 Hz 134 Hz
Repeated measures ANOVA p = 0.011∗∗ p = 0.284

Figures 7 provides comparisons of the absolute value of the mean
differences of vowels using DARLA and FAVE. For many of the vow-
els, there was not a significant difference in the two measurement
techniques. These mean differences were calculated by taking the ab-
solute value of the mean of all measurements of the given vowel by
the FAVE methods and comparing it to the mean of all measurements
of the same vowel by DARLA. T-tests were also conducted on the
set of all FAVE measurements of the given vowel versus the DARLA
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Figure 6: DARLA and FAVE formant extraction results. Northern and
Southern means are represented by dark circles and unfilled squares respec-
tively.

DARLA

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

1600 1500 1400 1300 1200 1100 1000

45
0

40
0

35
0

CAVE

F2

F1

● Northern
Southern

AA

AE

AH

AO

AW

AY

EH

ER

EY

IH

IY

OW

OY

UH

UW

AA

AE

AH

AO

AW

AY

EH

ER

EY

IH

IY

OW

OY

UH

UW

FAVE

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

1600 1500 1400 1300 1200 1100 1000

45
0

40
0

35
0

FAVE

F2

F1

● Northern
Southern

AA

AE
AH

AO

AW
AY

EH

ER

EY

IH

IY

OW

OY

UH

UW

AA

AE
AH

AO

AW

AY

EH

ER

EY

IH

IY

OW

OY

UH

UW

17



measurements of that same vowel. Pairwise comparisons were not
conducted since the two systems do not always measure the same to-
kens, as described above. Using pairwise comparisons, prior work on
(human) inter-analyst differences has reported the following: Evanini
(2009:92-94) finds an average difference of 57.8 HZ for F1 and 126.4
Hz for F2. The other inter-analyst results cited by Evanini are compa-
rable; Labov, Yaeger, and Steiner (1972:32) report a range of 31.5 to
40.5 Hz for F1 and 38 to 84 Hz for F2. Deng, Cui, Pruvenok, Huang,
Momen, Chen, and Alwan (2006) find an average inter-analyst differ-
ence of 55 Hz for F1 and 69 Hz for F2. Hillenbrand, Getty, Clark, and
Wheeler (1995) report inter-analyst differences of 9.2 Hz for F1 and
17.6 Hz for F2. Our mean differences are naturally somewhat lower
for two reasons: (a) Figure 7 is based on the mean of the measurement
differences, rather than pairwise differences for each measurement, and
(b) we Lobanov-normalize the formant values and scale the z-scores
to be interpretable in Hz (Equations 3-4).

4 Discussion

4.1 Bringing replicability and error estimation
into sociophonetics

The use of automated methods in sociophonetics suggests the need
for a different perspective on measurement error. In traditional man-
ual approaches to sociophonetics, researchers typically treat their ex-
tracted formant data as error-free. This assumption is seen in the
fact that such research articles rarely include error estimations for
the formant extractions. Error estimation usually only appears in the
statistical modeling. Yet, testing has shown that data collected by
human analysts can be imperfect or inconsistent with other analysts
(Sec. 3.2).

We recognize that some researchers may prefer manual approaches
where the human analyst can carefully consider each vowel token,
making judgments about which tokens to extract and which extraction
point is most appropriate for a particular token. While this approach
has produced a great number of valuable analyses and clearly has a
number of important strengths, it has limitations in terms of speed
and replicability between analysts. It is well known that there is
variation in the way different sociophoneticians manually extract vowel
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Figure 7: Average differences between vowel formants extracted by DARLA
and FAVE. For F1, all the differences except the Northern EY and OW, and
Southern AW, are not significant. For F2, the Northern EH, EY, OW, and AW

differences are significant.
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formants, following a range of opinions about extraction points and
other variables (Thomas 2011:150-152, Di Paolo, Yaeger-Dror, and
Wassink 2011:91, Labov 1994:165).

As Kendall and Fruehwald (2014) point out, the adoption of more
automation will make sociophonetics more replicable. This would
bring sociophonetics into the realm of fully replicable scientific en-
deavors, such as physics or chemistry, where measurement error es-
timations are reported and data sets can be directly compared or
checked independently by different research teams. For example, sup-
pose that a sociophonetics researcher manually extracts 20 tokens for
each vowel from 50 speakers sampled in a certain population. Suppose
that a second researcher works in a nearby population and wants to
compare results with the first researcher. If the two researchers had
different judgments or philosophies about vowel extraction, the second
researcher might have to measure formants at many different extrac-
tion points, through trial and error, from the first researcher’s data
set in order to replicate the results. Since such a task would be ardu-
ous, sociophoneticians often rely on qualitative comparisons of other
researchers’ published work, rather than directly comparing the data
sets. Therefore, while fully automated vowel extraction necessarily
brings in some sources of error, it has the advantage of allowing for
quick, consistent, and complete replication across data sets as long as
the ASR, alignment, and formant extraction parameters are reported.

4.2 Future directions

We are currently exploring recent advances in ASR that use deep neu-
ral networks (Hinton, Deng, Yu, Mohamed, Jaitly, Senior, Vanhoucke,
Nguyen, Sainath, Dahl, and Kingsbury, 2012) for acoustic modeling.
Such methods have demonstrated remarkable improvements in recog-
nition accuracy over the traditional HMM+GMM models, and will
likely improve the overall performance of our system. Eventually,
we would like to expand the scope of DARLA beyond English, and
implement automated methods for analyzing sociophonetic variables
besides vowels, drawing upon previous research in measuring rhoticity
(Hesselwood, Plug, and Tickle, 2010), voice onset time (Sonderegger
and Keshet, 2012), glottal source (Kane, 2012), and other features.
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5 Conclusion

This project has taken a first step toward completely automatic vowel
formant extraction, introducing a system called DARLA (Dartmouth
Linguistic Automation). Our results suggest that completely auto-
mated ASR systems like DARLA can be used for extracting formant
data to answer meaningful sociolinguistic questions. ASR technology
is not reliable enough for consistently accurate transcriptions, but it
is reliable enough for certain types of research. In particular, we note
that sociophonetic vowel research is usually focused on finding repre-
sentative vowel spaces from stressed vowels. For such goals, perfect
accuracy in transcriptions is not usually necessary. Obtaining repre-
sentative vowel tokens may often be sufficient, as long as the likely
phonetic environment for each token is included along with probabil-
ities.

In this study, we conducted a feasibility test of DARLA using U.S.
Southern and Northern speakers from the Switchboard telephone cor-
pus. As a control, we extracted formants from the same dataset using
the semi-automatic FAVE system, which requires a human analyst
to manually create sentence-level transcriptions. Both DARLA and
FAVE found clear evidence of the Southern Vowel Shift in the South-
ern speakers, although the shifts were somewhat weaker in DARLA.

No automated system is perfect, but we believe that the poten-
tial access to large-scale datasets makes these types of automated ap-
proaches worthwhile, even though they differ from traditional manual
approaches. Many other scientific fields like physics and astronomy
regularly report error estimates in their measurements, not just in
their statistical modeling. Such error estimates and accessible au-
tomation techniques could make it possible to analyze vast amounts
of audio data in fully replicable research. With continuing advances
in ASR technology in coming years, the widespread use of completely
automated vowel extraction for sociophonetic research may not be far
away.
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