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Abstract

Automatic Speech Recognition (ASR) is reaching further and further into everyday
life with Apple’s Siri, Google voice search, automated telephone information systems,
dictation devices, closed captioning, and other applications. Along with such advances
in speech technology, sociolinguists have been considering new methods for alignment
and vowel formant extraction, including techniques like the Penn Aligner (Yuan and
Liberman, 2008) and the FAVE automated vowel extraction program (Evanini et al.,
2009, Rosenfelder et al., 2011)). With humans transcribing audio recordings into sen-
tences, these semi-automated methods can produce effective vowel formant measure-
ments (Labov et al.|2013). But as the quality of ASR improves, sociolinguistics may be
on the brink of another transformative technology: large-scale, completely automated
vowel extraction without any need for human transcription. It would then be possible
to quickly extract vowels from virtually limitless hours of recordings, such as YouTube,
publicly available audio/video archives, and large-scale personal interviews or stream-
ing video. How far away is this transformative moment? In this article, we introduce
a fully automated program called DARLA (short for “Dartmouth Linguistic Automa-
tion,” http://darla.dartmouth.edu), which automatically generates transcriptions
with ASR and extracts vowels using FAVE. Users simply upload an audio recording of
speech, and DARLA produces vowel plots, a table of vowel formants, and probabilities
of the phonetic environments for each token. In this paper, we describe DARLA and
explore its sociolinguistic applications. We test the system on a dataset of the US
Southern Shift and compare the results with semi-automated methods.

1 Introduction

Existing computational tools for sociophonetics like the Penn Aligner (Yuan and Liber-
man), [2008) and the ProsodyLab Aligner (Gorman et al., 2011) use computational
methods to “force align” words and phonemes against speech. Such alignment meth-
ods are typically used in a semi-automated manner, i.e., human researchers supply
manual transcriptions of sentences, and the aligner maps phonemes to their acoustic
representations. More recently, [Evanini, Isard, and Liberman (2009) built a program
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for automated formant measurement, and |Rosenfelder, Fruehwald, Evanini, and Yuan
(2011) combined it with the Penn Aligner to create a system called FAVE (Forced
Alignment & Vowel Extraction). With humans transcribing recordings into sentences,
these semi-automated methods can produce effective analyses of field data (Labov,
Rosenfelder, and Fruehwald, 2013| Stanford, Severance, and Baclawski, 2014]).

Sociolinguistics may now be on the brink of another transformative technology:
large-scale, completely automated vowel extraction without any need for human tran-
scription. With such technology, it would be possible to quickly extract vowel for-
mants from virtually limitless hours of recordings, such as YouTube and audio or video
archives. Imagine how much more we could learn about dialect variation if we could
quickly analyze the millions of hours of audio data around the world in archives and
vast publicly available sites. What kinds of new generalizations may be possible? What
new kinds of moment-by-moment style shifts might we observe?

1.1 Prior work

Forced alignment programs take an orthographic transcription and audio as input,
and produce a time-alignment of the words and phonemes with the audio. There are
several such programs available, including the Penn Aligner, the ProsodyLab Aligner,
EasyAlign (Goldman} 2011), and WebMAUS (Kisler et al., 2012). All of these sys-
tems are built as wrappers around the forced-alignment functions of the HTK speech
recognition toolkit (1989-2015)), tailored for linguistic applications.

Methods for obtaining formant measurements have traditionally relied on token-by-
token extraction aided by software like Praat (Boersma and Weenink| 2015) that uses
Linear Predictive Coding (LPC). With forced alignment tools like the Penn Aligner,
a human transcriber produces a sentence-level transcription that is aligned to the
audio using acoustic models and a pronunciation dictionary. These alignments help
researchers to quickly locate vowels and take formant measurements. University of
Pennsylvania researchers have recently developed FAVE, a system that combines the
above-described forced alignment (FAVE-Align) with a program, FAVE-Extract, that
automatically extracts vowel formant measurements at the appropriate points with
LPC. The researcher manually creates a sentence-level transcription, and the semi-
automated FAVE system does the rest, returning the final output as a table of vowels
and their formant values in the speech recording. An example of this process is shown
in Figure

Finally, Thomas and Kendall (2007) have developed an R library, vowels, and a
web interface, NORM, that aids researchers in normalizing and scaling vowel formant
measurements as well as producing F1/F2 vowel plots.

Semi-automated alignment and vowel extraction methods therefore represent a sig-
nificant improvement in efficiency over the largely manual methods that were ubig-
uitous only a decade ago. No automated or semi-automated method is ever perfect,
of course; these methods are prioritizing speed and access to larger data sets, while
allowing for some error.

Initial testing suggests that methods like FAVE can produce reasonably accurate
vowel measurements of speakers, especially when large amounts of data are processed.



Figure 1: Praat visualization of a semi-automated vowel extraction workflow using FAVE.
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(a) Manual transcription to be input to FAVE-Align.
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(b) Alignment output from FAVE-Align, which is then input to FAVE-Extract.



vowel | stress | word F1 F2 F3 time beg end dur
AH 1 WHAT | 630.5 | 1274.5 | 2012.7 | 244.61 | 244.587 | 244.656 | 0.069
AE 1 THAT | 741.0 | 1831.4 | 2908.8 | 245.24 | 245.197 | 245.327 | 0.130

(c¢) Final output from FAVE-Extract. The ‘stress’ column shows whether the vowel has primary,
secondary, or no stress in the word, F1, F2, and F3 are the values of the first three formants, and ‘time’
(in seconds) indicates the point in the audio at which the formants are measured. ‘beg’, ‘end’, and
‘dur’ respectively specify the start and end points, and duration, of the vowel. Not shown: Additional
columns with formant measurements at different positions in the vowel, bandwidths, environments,
and other information.

Evanini (2009:92) and |[Evanini et al| (2009) compare manual methods against auto-
mated extraction, and show that the amount of error is comparable in most cases
to the error found between human analysts. A comparison of such semi-automated
methods with Atlas of North American English (Labov et al., 2006) data found that
the semi-automated results were comparable to manual measurements (Evanini et al.),
2009:3-4). In addition, [Evanini (2009)) points out that the sociolinguistic interpreta-
tions (e.g., Northern Cities Shift) are comparable in both approaches. |Labov et al.
(2013:37-38) compare ANAE formant data against the much larger data set extracted
from the Philadelphia Neighborhood Corpus, and find that as the number of tokens
increases, the standard error of the mean becomes smaller.

1.2 Research question

Prior work suggests that semi-automated techniques are effective for many types of
sociophonetic analyses. Even so, all of these methods still require a significant human
workload: manually creating the sentence-level transcriptionsE] Because of this barrier
in time and resources, many large data sets remain unanalyzed. What new knowl-
edge about language variation and change may be waiting in the vast pools of audio
recordings that are untranscribed and unanalyzed?

In the present study, we investigate the possibility of removing the human compo-
nent entirely from the process. Using speech recognition, can vowel extraction be fully
automated such that there is no need for human intervention at any point? We build
a system called DARLA, short for “Dartmouth Linguistic Automation,” that auto-
mates the entire pipeline from transcribing audio to alignment and formant extraction.
The web interface of DARLA is elaborated upon in Reddy and Stanford (2015). In
the present paper, we test DARLA on a corpus of audio recordings of northern and
southern US speakers and investigate how it compares to semi-automated methods.

1.3 Our idea

The technology of automatic speech recognition is constantly improving, and it is
possible that ASR systems will reach human transcription accuracy in a decade or so.

!Transcription is estimated to take 10-15 times the duration of the audio, depending on the quality and
type of speech.



However, anyone who has used speech recognition applications such as Apple’s Siri,
Nuance’s Dragon, or automated telephone banking systems knows that the current
technology is still very unreliable. These systems are fast and often helpful, but they
cannot match the accuracy of human manual transcriptions. In unconstrained natural
speech data, errors in speech recognition are quite common.

Despite the imperfection of automatic speech recognition, we believe that sociopho-
neticians do not need to wait for years to begin taking advantage of the possibilities
of large-scale data analyses. The power of ASR can be harnessed right now for some
types of sociolinguistic applications. Here’s why: whereas applications like dictation
software or mobile assistants require that the system captures the words accurately,
sociophonetic vowel research generally focuses on a much narrower objective, namely,
extracting a representative vowel-space for each speaker, based on stressed vowel to-
kens. In this paper, we show that current ASR technology is adequate for extracting
formant values from stressed vowels for certain sociophonetic problems.

Examples show a human transcription compared with ASR output on a sub-
set of the Switchboard corpus (Godfrey and Holliman| 1993)). The italicized words
highlight the ASR errors. (Details about our speech recognition system, experimental

setup and corpus are in Sec. and Sec. )

Manual: give me your first impressions

1
(1) ASR: give me yours first impression
(2) Manual: it’s one of those
ASR: it’s close
(3) Manual: no it’s it’s wood turning
ASR: no it it  would turn it

(4) Manual: and we really don’t spend on anything
ASR: and we don’t depend on anything

Notice that the ASR errors above do not affect the identity of the vowel being
targeted. Rather, the errors affect the identity of the word. The stressed vowels,
which are the most common target of sociophonetic analyses, are accurately identified.
For example, note the error of ‘your’ versus ‘yours’ in example . For most practical
sociophonetic purposes, it is irrelevant whether the stressed vowel is extracted from the
word ‘your’ or ‘yours’. Likewise, in example , it is unlikely that any sociophonetic
analysis would crucially depend on knowing that the stressed vowel in ‘turning’ was
extracted from ‘turning’ rather than ‘turn it’, or that the ASR system outputs the word
‘would’ instead of ‘wood’ (example . In the last case, the vowel would be accurately
measured, although if a researcher chose not to include function words, the vowel token
in ‘would’ would be discarded.

Of course, these examples are not comprehensive: ASR errors that change the
identity of the stressed vowel do occur, but to a much lower degree than word errors,
and increasing the volume of data can minimize their effects. Figure [2| shows the
error rates on the Switchboard corpus used in this study. Notice that the stressed
vowel error rate is low in comparison with the error rate at the word or phoneme



1evelE| A completely automated vowel extraction process makes it possible to quickly
analyze hundreds or thousands of tokens of every vowel in a speaker’s vowel space. As a
result, errors in a few tokens are likely to become negligible to the overall sociophonetic
interpretation of the data for that speaker. In creating our program for automatic vowel
extraction, we take advantage of this relatively good stressed vowel accuracy for the
purpose of formant analysis.

Figure 2: ASR error rates on the Switchboard data (46 Southern and 47 Northern speakers,
55.5 total hours). The error rate for stressed vowels is significantly lower than for words.
Errors for phonetic environments of vowels in terms of place, manner, and voicing are also
shown.
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On the other hand, some vowel environments are important in sociophonetic anal-
yses, such as the presence of sonorant consonants or obstruent+liquid clusters, such
as ‘close’ for ‘those’ in example above, post-vocalic velar consonants, and so on.
Our system accounts for these effects by reporting the probabilities for the phonetic
environment for each vowel token, i.e., the likelihood that the segment on either side
of the vowel token is in a particular place, manner, or voicing class. For example, if
researchers wish to examine the effects of post-vocalic nasals (e.g., ‘pin’/‘pen’ versus
‘pit’/‘pet’), they could use the probabilities provided in our system’s output to code

2These error rates are relatively high because the acoustic models are trained on a different corpus — i.e.,
not Switchboard.



for these contrasting environments, with similar approaches to examine the effects of
post-vocalic velar consonants, pre-vocalic liquids, and so on. Sec. describes how
the probabilities are computed.

1.4 Completely automated vowel extraction

DARLA’s completely automated system takes as input an audio file, and returns data
about the vowels, including the formants, phonetic environments, and other informa-
tion. As such, the manual sentence transcription step (Fig. required for semi-
automated systems like FAVE is no longer needed.

We invite other researchers to try the system at http://darla.dartmouth.edu
and help test it by using their own data sets. Results of such testing will help us to
continue to improve DARLA and tailor it to other sociophonetic research questions.
Besides research, we believe that DARLA will be useful as a teaching demonstration
for introductory linguistics courses and sociolinguistics courses.

2 Methods

DARLA’s end-to-end pipeline consists of an ASR engine for transcription of the in-
put audio, forced alignment of the audio with the transcription using the Prosody-
Lab Aligner, confidence filters and phonetic environment probabilities using classifiers
trained on speech data, code built upon FAVE-Extract for formant extraction, and
vowel space plotting using the R vowels package. DARLA is implemented as a user-
friendly webpage that allows users to upload their audio files or links to YouTube
videos, and receive the results by e-mail. Descriptions of the main components of our
system follow.

2.1 Automatic speech recognition engine

DARLA uses a speech recognition system based on Hidden Markov Models (HMMs)
(Jelinek et al.l 1975)), implemented with the latest version of the Carnegie Mellon
University (CMU) Sphinx toolkit (2000-2015).

As is standard, the speech signal is represented as a sequence of Mel-Frequency
Cepstral Coefficients, or MFCCs (Davis and Mermelstein, 1980). Acoustic frames of
25ms duration are extracted from the audio at overlapping intervals of 10ms, and a set
of 12 MFCCs are computed from the Fourier transform of the audio.

The goal of automatic speech recognition is to “decode” the most likely transcription
w of an input speech recording o, i.e:

w = arg max P(w|o) = arg max P(w)P(o|w) (1)

The quantity P(w) comes from the language model, which is a probability distri-
bution over word sequences in the language. The language model gives a gradient
measure of syntactic and semantic “goodness” of a sentence. P(o|w) is given by the
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acoustic model, which is a distribution that maps phones to their MFCC acoustic rep-
resentations using HMMs and Gaussian Mixture Models (GMMs). A pronunciation
dictionary, which links orthographic spellings of words to their pronunciations, is used
in conjunction with the acoustic model. The parameters of these probabilistic models
are estimated by training on large speech and text corpora.

We train a triphone acoustic model (which estimates parameters for each phoneme
in the context of its left and right neighbors) with a mixture of 32 Gaussians. The
choice of acoustic model affects the accuracy of ASR: best results are obtained when
the model is trained on data with the same sampling rate and from dialects that
are similar to the speech to be transcribed. For this reason, we train separate acoustic
models on 8kHz and 16kHz speech, and include the option on the web application to use
acoustic models trained on speech from various different dialect regions. The Standard
American 8kHz models are trained on the LibriSpeech corpus (Panayotov et al., 2015)),
a collection of US English speech consisting of about 360 hours of audiobooks from the
open-access LibriVox projectE] All training was carried out using SphinxTrainE]

The pronunciation dictionary that we use for training and recognition is the CMU
Dictionary of Standard American English pronunciations (1993-2015). The language
model is trained on the transcripts of the HUB4 broadcast news corpus.

In practice, the language model component in Eq. [1] is typically scaled by a non-
negative factor «, the “language weight” (Eq. . Larger values of « prioritize the lan-
guage model and tend to result in more grammatically correct transcriptions, whereas
lower values shift the burden to the acoustic model.

w = arg max P(w|o) = arg max P(w)*P(o|w) (2)
w w

The DARLA interface allows users to specify whether their audio consists mainly
of free speech and reading passages, for which a larger language weight would be
beneficial, or word lists, for which the program uses a lower weight. Pocketsphinxﬁ is
used for decoding of the speech to produce transcriptions.

2.2 Alignment and token filtering

The ProsodyLab aligner with acoustic models trained on a subset (10 hours) of the
LibriSpeech corpus is used for the forced-alignment step.

Alignment with noisy transcriptions (such as those produced by ASR) often contain
errors even if the vowels are identified correctly. Figure [3|shows an example where the
ASR transcribes an input as it’s close instead of it’s one of those. Even though the
0W vowel in the last syllable is correct, the vowel is aligned against multiple words in
the speech due to the absence of one of in the ASR transcription. Formants extracted
from such an alignment will naturally be incorrect. To minimize such errors, we train
probabilistic models for each phoneme, based on MFCC features as well as duration,
which give the likelihood of any acoustic segment being matched to the hypothesized
phoneme. Low-likelihood vowel tokens are removed from the analysis.

3https://librivox.org
“https://github.com/cmusphinx/sphinxtrain
> https://github.com/cmusphinx/pocketsphinx
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Figure 3: ASR transcription resulting in a poor alignment.
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it’s one of those
H|T]s] w |aH]JAH] ] ow |z
it’s close
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Following standard practices in sociophonetics (Baranowski, 2013), DARLA ex-
cludes unstressed syllables, grammatical function words and other common lexical
items (e.g., is, the, I'm, and, etc.), and tokens whose formants have high bandwidths
(> 300 Hz) — i.e., tokens which likely have inaccurate formant alignments. The system
output includes a file with the unfiltered tokens as well as the filtered measurements.

2.3 Phonetic environment probabilities

Sociolinguists are often interested in the phonetic environment of the vowel, such as
whether the coda is a velar or the onset is voiced. Researchers in speech recognition
have identified methods to classify whether or not any sound frame belongs to one of
these distinctive phonetic features (Hasegawa-Johnson et all [2005). Following their
work, we train classifiers on each frame in terms of MFCCs, and formant frequencies,
amplitudes, and bandwidths for (1) whether the segment is a vowel or consonant and
(2) place, manner, and voicing of consonants. The classifiers are logistic regression
models trained on the phonetically annotated Switchboard Transcription Project data
(Greenberg et al.l 1996|) for 8kHz speech, and the TIMIT corpus (Garofolo et al.,
11993) for 16kHz. The probabilities, P(phonetic feature|frame), are averaged over the
duration of the segment and reported in DARLA’s output.

3  Feasibility test: Fully automated (DARLA)
compared to semi-automated (FAVE)

3.1 Experimental Setup

For our feasibility test of DARLA, we examined the U.S. Southern Vowel Shift (SVS)
in the Switchboard corpus of phone conversations. From this corpus, we selected
conversations by U.S. Southern and Northern speakers, totaling 46 and 47 speakers
respectively. 22 of the Northern speakers and 28 of the Southern speakers are women.
This selection of the corpus totals 55 hours and 38 minutes.

We categorized speakers as Southern or Northern according to their home regions
in the Switchboard metadata, as compared with the regions identified in the ANAE.



Speakers were considered Southern if their Switchboard regions (Fig. E[) were Southern
or South Midland, corresponding approximately to the ANAE categories of South and
Texas.

Figure 4: Dialect regions used in the Switchboard corpus. Reprinted from http://www.
isip.piconepress.com/projects/switchboard/doc/swb_dialects.

In the present study, we used the 8kHz acoustic models trained on Standard Amer-
ican English speech since we are evaluating the system on a mixed set of dialects.

Fig. [5| shows a sketch of the Southern Shift (Wolfram and Schilling-Estes, 2006,
1996). In our discussion of the Southern Shift, we use the CMU dictionary’s
Arpabet vowel notation (Table [I]).

Figure 5: The key movements of the U.S. Southern Shift. Adapted from

Schilling-Estes| (2006:149).
IY
‘\\ €< Uun
IH
€< Oow
\
\EH

For this study of the Southern Shift, we chose to focus on the tense-lax shifts
(EH-EY and IH-IY) and the back vowel fronting of UW and OW. We hypothesize that
the Southern speakers will show greater tense-lax shifts and greater UW and OW fronting
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Table 1: Arpabet vowel set.

AA AE AH AQ AW AY EH
hot | bat | but | bought | bout | bite | bet
EY IH Iy ow (0)'¢ UH uw
bait | bit | beat boat boy | hood | boot

than the Northern speakers. We further hypothesize that both DARLA and FAVE will
find evidence of these North-South contrasts. We also note that [Kendall and Fridland
(2012) find that the EH-EY shift is typically more advanced than IH-IY, and therefore
expect that EH-EY will be more advanced in this data set. Following Kendall and
Fridland, we measure the Euclidean distance (F1/F2 axes) as a measure of the extent
of the tense-lax shift.

Our dataset consists of 55 hours and 38 minutes of two-person telephone conver-
sations, with an average of 383 tokens per vowel per speaker. We used DARLA to
automatically transcribe and align these Switchboard recordings, and extract F1 and
F2 from the stressed vowel tokens after acoustic confidence filtering.

As a control for the feasibility test, we also extracted the formants from the same
dataset using the (semi-automated) FAVE system along with manual transcriptions.
Specifically, we used FAVE-Align to align the transcriptions provided by Switchboard,
and passed those alignments into FAVE-Extract, which provides the formant measure-
ments. We recognize that there are many different approaches to choosing formant
extraction points, so we simply used the FAVE default method and applied it con-
sistently to both DARLA and FAVE in this study. Future work could try different
measurement points. For both DARLA and FAVE, we normalized the formant data
with the Lobanov (speaker-intrinsic) method (Lobanov, 1971, Thomas and Kendall,
2007)), and scaled the z-scores to the Hz scale using the constants in N ORMH

F1 — F1min
Flscaled = 250 + 500 - W (3)
F2 — Famin

Foscaled — 850 4+ 1400 ——— =
Fomax _ pomin

3.2 Results

While DARLA showed some transcription errors (see Fig. [2)), both DARLA and FAVE
generated comparable sociolinguistic analyses of Southern features. This overall result
suggests that DARLA can provide usable results for such research questions.

Figure [6] shows that both DARLA and FAVE revealed clear North-South contrasts
in EY-EH and IY-IH in the expected directions. For both methods, these shifts appear
in the expected Southern Shift directions (EY and IY are lowered and backed, and EH
and IH are raised and fronted). Likewise, our hypotheses about OW and UW fronting are

Shttp://lvc.uoregon.edu/norm/about_normi.php#scaling
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confirmed as the Southern speakers showed stronger fronting than the Northerners un-
der both systems. The main difference is that DARLA shows slightly weaker Southern
effects, as observed in the graphical contrasts between Southern and Northern speakers.

Table [2| quantitatively measures the tense-lax shift by the FEuclidean distance be-
tween the mean values of the tense and lax vowels in F1/F2 space, averaged over all
the speakers in that region. The Southern speakers have a smaller tense-lax distance
than the Northern under both DARLA and FAVE, as expected of the Southern Vowel
Shift.

The table also shows the results of the Repeated Measures ANOVA tests of the
Northern versus Southern Euclidean distances. The North-South contrast in the EH-EY
shift was significant for both methods, but the contrast in IH-IY was only significant
in FAVE (p = 0.011), not DARLA (p = 0.284). For IH-IY, DARLA’s results are in the
expected direction, but the contrast is not strong enough to be significant. In prior
Southern Shift research, EH-EY is typically more advanced than IH-IY (Kendall and
Fridland, 2012), and both DARLA and FAVE show this effect as well.

Table 2: Tense-lax shifts.

FAVE DARLA
North Mean EH-EY distance 79 Hz 83 Hz
South Mean EH-EY distance 31 Hz 39 Hz
Repeated measures ANOVA | p = 0.001** | p < 0.0001***
North Mean IH-IY distance 150 Hz 145 Hz
South Mean IH-IY distance 117 Hz 134 Hz
Repeated measures ANOVA | p=0.011" | p=0.284

Figures [7] provides comparisons of the absolute value of the mean differences of
vowels using DARLA and FAVE. For many of the vowels, there was not a significant
difference in the two measurement techniques. These mean differences were calculated
by taking the absolute value of the mean of all measurements of the given vowel by the
FAVE methods and comparing it to the mean of all measurements of the same vowel by
DARLA. T-tests were also conducted on the set of all FAVE measurements of the given
vowel versus the DARLA measurements of that same vowel. Pairwise comparisons
were not conducted since the two systems do not always measure the same tokens,
as described above. Using pairwise comparisons, prior work on (human) inter-analyst
differences has reported the following: |Evanini| (2009:92-94) finds an average difference
of 57.8 HZ for F1 and 126.4 Hz for F2. The other inter-analyst results cited by |[Evanini
are comparable; |Labov et al. (1972:32) report a range of 31.5 to 40.5 Hz for F1 and 38
to 84 Hz for F2. Deng et al| (2006) find an average inter-analyst difference of 55 Hz
for F1 and 69 Hz for F2. Hillenbrand et al.| (1995) report inter-analyst differences of
9.2 Hz for F1 and 17.6 Hz for F2. Our mean differences are naturally somewhat lower
for two reasons: (a) Figure [7] is based on the mean of the measurement differences,
rather than pairwise differences for each measurement, and (b) we Lobanov-normalize
the formant values and scale the z-scores to be interpretable in Hz (Equations .
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Figure 6: DARLA and FAVE formant extraction results. Northern and Southern means are
represented by dark circles and unfilled squares respectively.
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Figure 7: Average differences between vowel formants extracted by DARLA and FAVE. For
F1, all the differences except the Northern EY and 0W, and Southern AW, are not significant.
For F2, the Northern EH, EY, OW, and AW differences are significant.
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4 Discussion

4.1 Bringing replicability and error estimation into socio-
phonetics

The use of automated methods in sociophonetics suggests the need for a different
perspective on measurement error. In traditional manual approaches to sociophonetics,
researchers typically treat their extracted formant data as error-free. This assumption
is seen in the fact that such research articles rarely include error estimations for the
formant extractions. Error estimation usually only appears in the statistical modeling.
Yet, testing has shown that data collected by human analysts can be imperfect or
inconsistent with other analysts (Sec. [3.2)).

We recognize that some researchers may prefer manual approaches where the hu-
man analyst can carefully consider each vowel token, making judgments about which
tokens to extract and which extraction point is most appropriate for a particular token.
While this approach has produced a great number of valuable analyses and clearly has
a number of important strengths, it has limitations in terms of speed and replicability
between analysts. It is well known that there is variation in the way different so-
ciophoneticians manually extract vowel formants, following a range of opinions about
extraction points and other variables (Thomas|[2011:150-152, Di Paolo et al.[2011{91,
Labov||1994:165).

As |Kendall and Fruehwald| (2014) point out, the adoption of more automation will
make sociophonetics more replicable. This would bring sociophonetics into the realm of
fully replicable scientific endeavors, such as physics or chemistry, where measurement
error estimations are reported and data sets can be directly compared or checked
independently by different research teams. For example, suppose that a sociophonetics
researcher manually extracts 20 tokens for each vowel from 50 speakers sampled in a
certain population. Suppose that a second researcher works in a nearby population and
wants to compare results with the first researcher. If the two researchers had different
judgments or philosophies about vowel extraction, the second researcher might have to
measure formants at many different extraction points, through trial and error, from the
first researcher’s data set in order to replicate the results. Since such a task would be
arduous, sociophoneticians often rely on qualitative comparisons of other researchers’
published work, rather than directly comparing the data sets. Therefore, while fully
automated vowel extraction necessarily brings in some sources of error, it has the
advantage of allowing for quick, consistent, and complete replication across data sets
as long as the ASR, alignment, and formant extraction parameters are reported.

4.2 Future directions

We are currently exploring recent advances in ASR that use deep neural networks (Hin-
ton et al., [2012)) for acoustic modeling. Such methods have demonstrated remarkable
improvements in recognition accuracy over the traditional HMM+GMM models, and
will likely improve the overall performance of our system. Eventually, we would like
to expand the scope of DARLA beyond English, and implement automated methods
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for analyzing sociophonetic variables besides vowels, drawing upon previous research
in measuring rhoticity (Hesselwood et al., |2010), voice onset time (Sonderegger and
Keshet, [2012), glottal source (Kane, 2012)), and other features.

5 Conclusion

This project has taken a first step toward completely automatic vowel formant extrac-
tion, introducing a system called DARLA (Dartmouth Linguistic Automation). Our
results suggest that completely automated ASR systems like DARLA can be used for
extracting formant data to answer meaningful sociolinguistic questions. ASR technol-
ogy is not reliable enough for consistently accurate transcriptions, but it is reliable
enough for certain types of research. In particular, we note that sociophonetic vowel
research is usually focused on finding representative vowel spaces from stressed vowels.
For such goals, perfect accuracy in transcriptions is not usually necessary. Obtain-
ing representative vowel tokens may often be sufficient, as long as the likely phonetic
environment for each token is included along with probabilities.

In this study, we conducted a feasibility test of DARLA using U.S. Southern and
Northern speakers from the Switchboard telephone corpus. As a control, we extracted
formants from the same dataset using the semi-automatic FAVE system, which requires
a human analyst to manually create sentence-level transcriptions. Both DARLA and
FAVE found clear evidence of the Southern Vowel Shift in the Southern speakers,
although the shifts were somewhat weaker in DARLA.

No automated system is perfect, but we believe that the potential access to large-
scale datasets makes these types of automated approaches worthwhile, even though
they differ from traditional manual approaches. Many other scientific fields like physics
and astronomy regularly report error estimates in their measurements, not just in their
statistical modeling. Such error estimates and accessible automation techniques could
make it possible to analyze vast amounts of audio data in fully replicable research.
With continuing advances in ASR technology in coming years, the widespread use of
completely automated vowel extraction for sociophonetic research may not be far away.
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