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Abstract
We introduce the problem of learning pronunciations of out-of-
vocabulary words from word recognition mistakes made by an
automatic speech recognition (ASR) system. This question is
especially relevant in cases where the ASR engine is a black
box – meaning that the only acoustic cues about the speech data
come from the word recognition outputs. This paper presents
an expectation maximization approach to inferring pronunci-
ations from ASR word recognition hypotheses, which outper-
forms pronunciation estimates of a state of the art grapheme-to-
phoneme system.
Index Terms: speech recognition, pronunciation models, lexi-
con adaptation, out-of-vocabulary words

1. Introduction
Speech recognition systems often have to deal with out-of-
vocabulary (OOV) words that are not represented in the pronun-
ciation lexicon. One way of estimating pronunciations of OOVs
is to use a grapheme-to-phoneme (g2p) model trained on the ex-
isting lexicon. The main disadvantage is that g2p systems tend
to overfit to the lexicon, which is problematic when the OOV
terms are proper nouns or loanwords whose pronunciations de-
viate from the standard grapheme-to-phoneme mappings.

An alternative is to directly estimate pronunciation from
speech samples containing the OOV word. Previous works that
take this approach make use of the phone lattice or the phoneme
recognition output derived from the speech samples, sometimes
constraining the pronunciations with a g2p model or language-
specific rules [1, 2, 3, 4, 5, 6, 7].

In this paper, we ask whether pronunciations can be esti-
mated from word recognition mistakes. When an ASR system
is given an OOV word as input, it will obviously make an error
– but its hypotheses will be phonetically similar to the orig-
inal word, therefore providing cues to its pronunciation. For
example, the proper name ‘Marilyn’ may be misrecognized as
‘Maryland’, ‘Mary learns’, ‘parallel’, ‘Perelman’, etc.

This question is mainly of interest in scenarios where we
do not have access to the phone lattice or a phoneme recog-
nizer, but are allowed to add words to the pronunciation lexicon,
which is the case in many popular commercial speech recogni-
tion systems. For example, we envision a third-party application
separate from the speech engine that takes the ASR recognition
outputs that are flagged as errors by the user, and uses them to
derive the word’s pronunciation. This automation would save
a non-expert user the time and difficulty of manually adding
words to the pronunciation lexicon.

Part of this work was performed while the authors were at Mit-
subishi Electric Research Laboratories (MERL).

We describe an algorithm to find the pronunciation of an
OOV word from a set of ASR recognition mistakes of one
or more speech samples containing the word. The algorithm
uses expectation maximization to maximize the phonetic sim-
ilarity between the pronunciations of the ASR hypotheses and
the OOV word’s pronunciation. Our method is tested on a cor-
pus of spoken proper names and is found to outperform g2p
pronunciation estimates, measured both by word error rate in
speech recognition on a held-out test set, and by phoneme error
rate compared to gold standard phonetic transcriptions.

2. Learning from Mistakes
2.1. Generative Model

The approach we describe is similar to the pronunciation mix-
ture model in [7], except that we do not have access to the acous-
tic models or phone lattices, only the word recognition mis-
takes. We focus on the task of isolated word recognition; how-
ever, this model can be easily extended to continuous speech
with a few minor modifications.

A speech sample consisting of an OOV word is passed
through an ASR decoder giving an n-best word recognition out-
put. Each hypothesis in the n-best list may be a single word or a
sequence of words. (Since the words are OOVs, every hypothe-
sis will be a recognition mistake.)

To go from recognition mistakes to pronunciations, we start
by describing below a generative story of the recognition output
for a word w.

1. Pick a pronunciation baseform b according to the distri-
bution θ, where θb,w = P (b|w).

2. Apply a phonetic confusion function from the word w
and the selected baseform b to generate a phoneme se-
quence p with probability P (p|b, w).

3. Generate a hypothesis word or word sequence e with
probability P (e|p, b, w) = 1 using the pronunciation
lexicon. (We assume e is generated deterministically
from p).

Consider the name ‘Marilyn’, and one of the ASR recog-
nition mistakes, ‘Maryland’. The generative story describes a
path from the word w to the recognition mistake e by picking
a pronunciation baseform b for ‘Marilyn’ and perturbing it us-
ing phonetic confusions to form a phoneme sequence p which,
according to the known lexicon, corresponds to ‘Maryland’.

We have access to w and e. We assume access to a basic
lexicon with pronunciations of the words in the system’s vo-
cabulary1, which means we also know p (in this case, M EH R

1While we may not have access to the actual lexicon of a black-box
ASR system, it can be approximated by a publicly available dictionary.



AH L AH N D). The phonetic confusion function can be es-
timated from rules or external data. The only unknown value
is the pronunciation b of the OOV ‘Marilyn’ – or more accu-
rately, the distribution θ – which we would like to discover. (Of
course, this generative model abstracts away the internal ASR
processes, since we are assuming only black box access.)

2.2. Algorithm Description

Let Ew be the union of the n-best recognition mistakes from all
instances of w in the speech data.

Let fe,b,w parametrize the phonetic confusion function;
fe,b,w = P (e|b, w). Then, the joint probability of a hypoth-
esis and a reference word is

P (e, w) =
X

b

P (e, b, w) =
X

b

P (e|b, w)P (b|w)P (w)

= P (w)
X

b

fe,b,wθb,w (1)

The log likelihood of the n-best recognition mistakes from
all OOVs in the reference transcriptions W is given byX

w∈W

X
e∈Ew

logP (w)
X

b

fe,b,wθb,w (2)

P (w) is simply the number of spoken instances of w di-
vided by the total number of utterances. Let us assume that we
are given the phonetic transformation function f , and a candi-
date set of baseformsB. We estimate the parameter θ by expec-
tation maximization as described below:

Expectation Step

P (b|e, w) =
fe,b,wθb,wP

p∈B fe,p,wθp,w
(3)

Maximization Step Update

θb,w =
1

|Ew|
X

e∈Ew

P (b|e, w) (4)

At convergence, the pronunciation for w that is chosen to
be added to the lexicon is the most probable b.

We denote our system by LFM, short for ‘learning from
mistakes’. LFM may also be used to find pronunciation vari-
ants of words that are already in the lexicon; however, due to the
risk of increased error rate when using a lexicon with too many
variants, we restrict ourselves to expanding the lexicon with a
very small number of pronunciations for each OOV term.

2.3. Initializing Candidate Baseforms

There are several possible ways of initializing the parameter θ
to constrain the space of candidate baseform pronunciations. In
this paper, we use a g2p-based approach. The joint n-gram ‘Se-
quitur’ g2p model described and implemented by Bisani and
Ney [8] is trained on the existing pronunciation lexicon. For
every OOV w, we initialize θb,w = 0 for baseforms b that are
assigned a probability of 0 by the g2p model, and uniformly
over all b for which the model assigns > 0 probability.

In order to ensure that the candidate set of baseforms with
non-zero probability is not too restrictive, we train the g2p
model with multigrams (sequences of ‘graphones’) of order 2,
which is a relatively weak setting, but ensures wide coverage.

2.4. Defining Phonemic Confusions

It is important that the function f (mapping the underlying
word w and its baseform b to the hypothesis e) be permissive
enough that the observed e has a non-zero chance of being gen-
erated from b, but constrained enough to be a meaningful pho-
netic transformation. Assuming that e only depends2 on b, this
amounts to defining the phonetic change from b to the concate-
nation of the pronunciations of the words in e, denoted by p.

We define the transformation as a finite state transducer
that allows insertions, deletions, and substitutions of phonemes.
The probabilities are derived by aligning phoneme recognition
results on TIMIT [9] with the reference phone transcriptions,
and mapping them to the CMU phoneset. The probabilities are
smoothed by add-one smoothing, and fe,b,w is computed to be
the probability of all paths through the transducer with the input
string b and output p.

3. Experiments
3.1. Data

The data comes from the CSLU Names corpus [10] of 24245
spoken personal names by 20184 different speakers. We use
only those utterances that contain a single word – a first or a last
name. We further remove all utterances where the transcrip-
tions indicate that they contain ‘unintelligibility’ or background
noise, giving a total of 20423 isolated-word utterances spanning
7771 unique names. The corpus was chosen for its large variety
of isolated proper names, many of which do not occur in typical
pronunciation lexicons.

One issue with this corpus is the variable number of utter-
ances per name, ranging from 1 to 187, meaning that there is no
way to make a uniform train-test split. Therefore, for each name
that occurs in more than one utterance, we hold out a random
50% of the utterances for testing. Since many (5453) names
occur in only one utterance, we evaluate our method by test-
on-train for these cases. This produces a (partially overlapping)
split of 12563 training and 13313 test utterances.

We also evaluate our method on the subset of the test data
containing only those 7860 test utterances that do not over-
lap with the training data (i.e., excluding the single-utterance
names).

3.2. Setup

We use the HMM-based CMU Sphinx 3 recognition engine
[11], with acoustic models trained on TIMIT. MFCC extraction
is also carried out using Sphinx with the default parameters (13
cepstral coefficients with delta and delta-delta, 100 frames/sec.,
0.025625 sec. window length).

Our basic pronunciation lexicon is the CMU pronunciation
dictionary with the names in the speech corpus removed (i.e.,
every name in the corpus is an OOV with respect to the lexicon).
The language model is a unigram model over the 7771 names
in the speech corpus, backed off to include the 114455 words in
the pronunciation lexicon.

Figure 1 summarizes the LFM methodology. In the lexi-
con expansion step, we generate n-best recognition outputs for
each utterance in the training data. Since the utterances are

2This is not true when we are dealing with multiple-word utterances
and interactions with the language model. However, since this paper
focuses on isolated words with a flat language model, the assumption
that e is conditionally independent of w holds.



Figure 1: Illustration of LFM methodology.
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all OOVs, every hypothesis in the n-best outputs is a mistake,
which may be a word or a short sequence of words.

We train a second-order g2p model using the Sequitur algo-
rithm [8] as described in §2.3 to initialize θ for the names in the
training set. This model produces an average of 218 candidate
baseforms for each of the 7771 names.

The EM procedure described in §2 is used to find the single
best pronunciation of each of the names, which is then added to
the basic lexicon. The algorithm converges quickly (4 iterations
when using a 0.1 log-likelihood convergence threshold).

In the evaluation step, we run the same decoder using the
expanded lexicon on the test set utterances, constraining the lan-
guage model to produce single-word utterances. We measure
the word error rate (WER) of the output hypotheses.

We also evaluate the quality of the LFM-expanded lexicon
by comparing its baseforms to the manual phonetic transcrip-
tions3 of the test utterances. We align the phonetic transcription
to the inferred pronunciation of the reference word and compute
the baseform error rate (denoted by BER), defined as the pro-
portion of inferred baseforms that differ at all from the reference
transcription, and the phoneme error rate (PER) – the percent-
age of phoneme insertions, deletions, or substitutions between
the inferred baseforms and the reference.

As a baseline, we evaluate the lexicon expanded with the
best pronunciations hypothesized by the Sequitur g2p algo-
rithm, using multigrams of order 6, trained on the CMU dic-
tionary with the names removed. This model is one of the state
of the art grapheme-to-phoneme systems, and is therefore an
appropriate point of comparison for pronunciation estimation.
We denote this baseline by SEQUITUR.

In addition, we define a ‘gold standard’ lexicon, denoted by
CMUGOLD, using the CMU dictionary pronunciation of a name
when available (4874 names). The CMUGOLD lexicon is tested

3The transcriptions are in the Worldbet alphabet, which we map to
the Arpabet system used in the CMU dictionary.

alongside our algorithm on the subset of test utterances (10362
in total) that contain these names.

3.3. Results

Figure 2 shows the word error rate on the test data using the ex-
panded lexicon derived from LFM with 5- and 10-best decod-
ing in comparison to the baseline and the gold standard. Recall
that because all the words in the data are OOVs by definition,
the WER using the non-expanded basic pronunciation lexicon
(with the names in the data artificially removed) is 100%.

Figure 2: Word error rate using LFM-expanded lexicon.
“LFM, 5-best” and “LFM, 10-best” denote the lexicons pro-
duced by using the 5-best and 10-best word recognition hy-
potheses respectively to infer a pronunciation for each OOV.
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(a) WER over all 13313 test utterances compared to the baseline.
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(b) WER over test utterances that do not overlap with the training data.
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(c) WER over only those 10362 test utterances containing the names in
the CMU dictionary, compared to the gold standard lexicon CMUGOLD.

Evaluation against the phonetic transcriptions is measured
by the baseform error rate and phoneme error rate over all the
test utterances as shown in Figure 3. The close to 0 PER for
CMUGOLD indicates that the phonetic transcriptions in the data
are almost the same as the CMU dictionary pronunciations. The
relative performance of LFM is similar to the speech recogni-
tion WER numbers. The phoneme error rate improves over SE-
QUITUR more noticeably than the baseform error rate.

There is considerable improvement over the SEQUITUR
baseline across all evaluations. While the actual pronunciation
error rates are significantly higher than the CMU gold standard,
the recognition accuracy is not much worse than CMUGOLD.
This is because many of the cases where the inferred baseform
does not match the transcription involves a minor difference like



a similar-phoneme substitution (‘AH’ for ‘IH’, etc.), which does
not affect recognition.

Figure 3: Baseform error rate and phoneme error rate of LFM-
inferred pronunciations of names in test utterances evaluated
against the phonetic transcriptions.
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(a) BER and PER over all test utterances.
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(b) Only test utterances that do not overlap with the training data.
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(c) Only the test utterances containing the names in the CMU dictionary.

4. Discussion
4.1. Error Analysis

Unsurprisingly, the density of a word’s ‘phonetic neighbor-
hood’ – the number of words or short word sequences that are
phonetically a small edit distance away from the word – affects
the success of this approach. For example, very few words in
the lexicon sound like ‘Rutherford’. As a result, the ASR recog-
nition mistakes are too dissimilar to the word’s actual baseform
to provide any useful acoustic information for our method to
harness. On the other hand, we do very well on words like
‘Marilyn’ that have a denser phonetic neighborhood.

For a small number of names (75, less than 1%), the can-
didate baseforms proposed by the g2p model do not include the
correct pronunciation, which is therefore never found by EM.

4.2. Future Work

As mentioned before, LFM can also be applied to discover pro-
nunciation variants of existing lexical items, which could be
particularly useful for pronunciation modeling of dialects and
accented speech. We would also like to experiment with differ-
ent datasets in English as well as other languages which require
pronunciation lexicons. For wider relevance, LFM could be

adapted to continuous speech rather than isolated words.
We would also like to explore ways of seeding θ that are

independent of Sequitur. For example, one could generate can-
didate baseforms using more primitive but fast statistical g2p
models, or with non-probabilistic grapheme-to-phoneme rules,
or by bootstrapping from a few human annotations. Since the
candidate space of baseforms generated from the basic Sequitur
model was fairly large as mentioned earlier (218 baseforms per
name), different ways of initializing θ will probably not hurt
performance, but this needs to be confirmed by experiment.

An interesting future direction is to combine phoneme (or
subword) and word recognition outputs to infer pronunciations.
Such a problem has a different motivation than the one underly-
ing this paper – rather than assuming that we are constrained to
black box ASR output, the idea would be to use word recogni-
tion as a cue in addition to phone and other acoustic information
when learning pronunciations from speech.

4.3. Conclusion

We have presented a method, applicable to black box speech
recognition scenarios, that learns pronunciation baseforms of
out-of-vocabulary words using ASR recognition mistakes, and
outperforms a state of the art grapheme-to-phoneme system.
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